### HHG BEAMLINES AND SPECTROMETERS





## HHG source systems

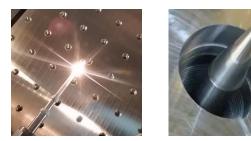
Turn-key HHG source

- reliable and stable operation for weeks without realignment
- low maintenance effort, full focus on the experiment
- one-stop integrated system
- modular system design with excellent accessibility

Long-term stable gas targets

- durability with increased LIDT, constant gas flow for months
- accurate closed-loop positioning
- closed-loop gas flow controller
- quick exchange with solid and rotating targets

Vacuum skimmer


- reduced XUV re-absorption for higher signal strength
- 10<sup>-4</sup> reduction in gas load

XUV spectral filters

- segmented foils for collinear pump/probe experiments
- improved heat dissipation for high-intensity beams and stable operation for months



Turn-key system for investigation of high-order harmonic generation in laser-produced plasmas. Flexible motorized target setup for rotating and flat solid targets and gas targets. Multiple beam access options for two-color pumping of plasma. Integrated frequency-doubling stage. Spectral filtering stage for high-intensity beams.

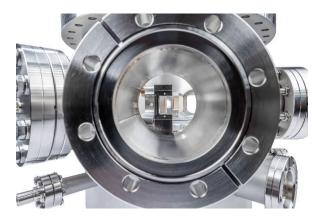


(1) Cross-drilled gas target allowing for long-term stable operation with constant gas flow. Convenient alignment with full beam due to high durability.

(2) Vacuum skimmer for reduced XUV re-absorption.

### In-line spectrometers

In-situ source characterization


- no-slit flat-field spectrometer with beam bypass
- no need for an alignmentsensitive narrow entrance slit
- ~20x more light collection than standard spectrometers, resulting in a proportional improvement of the signal-tonoise
- full automation for convenient control by software
- imaging spectroscopy option
- beam profiler option
- calibrated photodiode option
- wavefront sensor option

#### Customization

- every spectrometer is customized to exactly match the desired application, e.g.
- beamline integration
- auxiliary ports and view ports



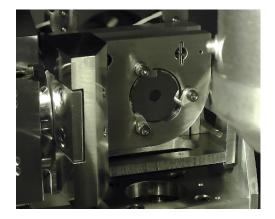
Compact spectrometer for in-situ HHG source characterization in the water window. Direct imaging of the source without entrance slit for maximum efficiency and day-to-day robustness. Undistorted beam in bypass mode. UHV vacuum setup. Longitudinal dimension <0.5m. All settings controlled remotely by software.



Beam-like view into in-line spectrometer. Reliable switching between bypass and spectroscopy modes by closed-loop positioners.

### Experimental target setups

Turn-key reliability


- vibration-decoupling UHV chamber design
- large variety of experimental configurations
- flexible integration of instrumentation – TOF, VMI, XPS, etc

XUV/VIS-IR beam recombination

- double-mirror assembly for collinear geometry
- toroidal mirrors for non-collinear geometry

Customization

 thorough requirements review and a collaborative design process ensure highest performance of the target chamber



Double-mirror delay assembly XUV/VIS-IR for collinear beam refocusing. Temporal resolution of  $\pm 3as$ . 5 degrees of freedom. Spectral isolation of the cut-off region. Low wavefront distortion due to optically precise shaped segments



Double-mirror for pump-probe attosecond experiments. Tailored mirror coating for specific energy selection for reliable generation of isolated attosecond pulses.

## Specifications

| Attosecond pulse wavelength          | 6-120nm / 10-200eV *                                       |                                 |
|--------------------------------------|------------------------------------------------------------|---------------------------------|
| Isolated attosecond pulse wavelength | 6-16nm / 80-200eV *                                        |                                 |
| Flux fluctuations                    | <3% rms in 12 hours *                                      |                                 |
| Pointing fluctuations                | <3urad rms in 12 hours *                                   |                                 |
| Operating pressure                   | <10 <sup>-9</sup> mbar (<10 <sup>-11</sup> mbar available) |                                 |
| Positioning                          | manual or motorized closed-loop                            |                                 |
| Customizable                         | fully customizable                                         |                                 |
|                                      | 60nm / 21eV                                                | 13.5nm / 90eV                   |
| Average power per harmonic           | up to 400uW *                                              | up to 0.9uW *                   |
| Photon flux per harmonic             | up to 10 <sup>14</sup> ph/s *                              | up to 5·10 <sup>10</sup> ph/s * |
| Bandwidth of harmonics               | < 10-2                                                     | <5.10-3                         |

\* with suited driving laser

## Contact us

HP SPECTROSCOPY Forggenseestr. 25, 68219 Mannheim, Germany tel +49 176 20949282, info@hp-spectroscopy.com http://www.hp-spectroscopy.com

